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ABSTRACT

A class of inultilayer bounded cellular arrays
is defined for which many useful recognition tasks
require time proportional to the logarithm of the
diameter of the input.
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1. Introduction

Image analysis involves a wide variety of techniques

for measuring properties of pictures, and extracting objects
• from pictures, for purposes of pattern recognition and de-

scription (for an introduction , see [13). Some of these

tasks are of a general nature (e.g., local averaging or

taking a Fourier transform), while others are specific to

image processing (e.g., thinning or connected component

counting). Methods of reducing the computation time of

• various general—purpose algorithms have been extensively

studied ; see [2] for an introduction 9owever , these methods

have not been applied , to any appreL. ~ extent, to the de-

velopment of efficient image analysis techniques. Even less

is known about efficient algorithms for performing image-

specific tasks.

Many basic image recognition and analysis algorithms

can be implemented very efficiently using parallel hardware.

These algorithms operate independently on ‘each point of the

image and its ieighbors and do not make use of any results

that may already have been obtained at previously processed

points. For this reason , “cellul ar” parallelism, in which •

similar or identical processors are uniformly interconnected ,

can perform many image analysis tasks much faster than a

conventional sequential processor which examines the picture

points one at a time. Each processor operates upon its own

memory and has its own local control, which is globally

synchronized. Since synchronization , uniform interconnec— 
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tion and distributed memory are fixed in advance, much of the

overhead that characterizes less restricted multiprocessor

computers is not applicable in a cellular machine. Further-

more, the restrictions facilitate algorithms which uniformly

measure and agglomerate local properties using a balanced

divide-and-conquer approach. Also, due to the regularity of

its structure , a cellular array is a natural candidate for

LSI implementation.

I. One problem with cellular architectures is the inter-

processor communication time defined by the interconnection

links. As mentioned above, algorithms which can be decom—

posed into mutually independent subtasks of the same form

and complexity , requir ing information only from nearby

processors , are the most suitable . Under conditions where

• communication between distant processors is necessary , vari-

ations on the standard cellular approach may be desirable

which lower this overhead . The “pyramid” cellular machine

introduced in this paper configures processors so that the

• maximum of the distances between any two of them is logarith-

• mically , not linearly, proportional to the number of pro-

• cessors.

Cellular array automata have been investigated pre-

viously as pattern recognition devices [3-6]. However, the

use of cellular arrays imposes a lower bound on the inherent

time complexity of language recognition , since any neighbor-

• hood interconnection network of processors requires a linear

time lower bound for recognition . We can improve on this
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• limi tation by allowing the processors to occupy more

dimensions than the input pattern. Such an extended-parallel

machine may view the input at different levels of represen-

tation, and may also provide straightforward structural

means for going from one level to another. Perceptrons [7]

are a well-known example of extended parallelism which

divide a computation into two distinct stages: measuring

local properties and linearly combining the results.

A particularly simple modification of cellular arrays

which extends them into a third dimension defines a class

• of multi-level cellular array automata. In particular , the

pyramid data structures that have been used for image

analysis [8-101 suggest the idea of a pyramid cellular

acceptor. This acceptor is a stack of cellular arrays, where

• the bottom array is 2r_by_2r, the next lowest 2
r_l_bY_2r_l ,

and so on, until the top array consists of a single pro-

cessor. Each layer is a cellular array , and in addition ,

each cell can sense the states of four cells in the layer

• below it , and of one cell in the layer above it. Thus each

• cell is connected to a “father” cell in the level above, to

four “brother ” cells in the current level , and to four “son”

cells (in a two-by—two block) in the level below. The input

I - 
is stored in the bottom array , the other cells being placed

initially in a quiescent state. The pyramid accepts its

input if the cell at its apex enters an accepting state.

This novel computational model improves the potential lower

bound time complexity for nontrivial recognition tasks to

_ _ _• ---- • •--• •~~~~~~ -~~~~~~~~~~~~
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the logarithm of the diameter of the input, with only a

moderate increase in hardware complexity - over conventional

cellular arrays.

In Section 3 we dLfine cellular pyramids (as well as

certain simplifications), following a brief review of
• cellular arrays in Section 2. Some basic pyramid recogni-

tion algorithms are described in Section 4. Section 5 corn-

pares this new model with three others -- finite-state
acceptors, tree acceptors, and perceptxons. We study

additional language recognition capabili ties of cellular

• pyramids in Section 6, and discuss their limitations in Sec-

tion 7.

I

I 
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• 2. Cellular Arrays

A bounded cellular array acceptor (CA) is a finite ,

rectangular array of identical finite state machines (FSM’s),

or cells. Each of these cells is a quadruple M = 
~
0N ’ 0T’

6, A) where is a nonempty , finite set of states , 
~T ~

is a finite set of input states, A 
~ 

is the set of

accept states, and 6: Q~ ~N 
is the state transition func-

k 
tion , mapping the current states of M and its four nearest

neighbors into M’s next state. If M is to be nondeterministic

5 Q
then the mapping is into sets of states, i.e., 6: -

~ 2 N

In addition , there exists a special boundary state * t
~
QN.

The state transition function is restricted so that the

boundary state can never be exited from or entered . Con-

sequently, only those cells initially in a non-# state can

ever be in a non—# state.

A configuration of a CA is an assignment of states

from 
~N 

to each cell , in the CA. A step of computation 
*

corresponds to the simultaneous application of the state

transition function 6 at each cell. An input configuration

• is a configuration before the first step such that the state

of the (i,j)th cell is in if all of (i,j) ‘s neighbors are

in the array , and in the boundary state # otherwise (i.e.,

if (i , j )  is on the border of the array). Due to the re—

strictions on the state transition function those cells

initially in the boundary state * (which form a border of

unit width around the non-# cells) must forever remain in

that state; they are called boundary cells. All other cells



are initially in ~me non-# state and will be referred to

as retina cells.

An input configuration is accepted by a CA if at some

step the upper-left corner retina cell enters an accept

state. The set of input configurations accepted by a given

CA defines its language. Smith (51 has shown that the class

of languages accepted by nondeterministic (deterministic)

CA’s is the same class as accepted by nondeterministic (de-

terminis tic) array bounded acceptors , which are the two-

dimensional analog of linear bounded acceptors.

For an rn-by-n array , the number of time steps required

before every cell can know the state of every other cell is

m+n. Hence time proportional to the diameter of the input

array is a lower bound for nontrivial recognition problems.

Many tasks that at first . glartce seem to require 0(n2) steps

for art n—by—n array can actually be done in 0(n) steps. Ex-

amples include the detection of connectivity [4], majority

(more l’ s than 0’s) (5, 6], and packing(transforming an array

of 0’s and l’s to another array with the same number of l’s,

but upper—left justified) [6].

In one dimension the CA is an acceptor of string

languages. All of the previous definitions hold in this

case, except that now the state transition function maps

triples of states into states (or into sets of states, in

the riondeterministic case). That is, a cell’s next state

depends on its own current state and the states of its lef t

and right neighbors. An input configuration is of the form

S
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#x# , x ~ ç4, where the ith symbol denotes the starting state
of the ith cell. If the leftmost retina cell ever enters an

accept state then the initial string x is accepted by the

given CA.

It has been shown [11] that the class of languages

accepted by nondeterministic CA’s is the same class as

accepted by nondeterministic LBA ’s (i.e., it is the class

of context-sensitive languages). Smith [11] has shown that

palindrome , periodic and Dyck languages are recognizable by

CA’s in time proportional to the length of the input.



3. Cellular Pyramids

• In this section we define a pyramid cellular acceptor.

in order to simplify the exposition of this model we first

present its one-dimensional analog -- the triangle cellular

acceptor. We also introduce a simplification which restricts

the neighbor relation to be “bottom-up” .

3.1 Triangle Cellular Acceptors

• A triangle cellular acceptor (TA) is a triangular stack

of one-dirn~nsional CA’s, where the bottom row is of length

the next lowest 2~~
l, and so on. Surrounding the triangle

is a border of cells in the boundary state #. Each cell is

an identical finite state machine M = (QN , Q T , cS ,A ) ,  where

is again the state set, 
~ ~N 

is the input state set, and

A 
~ ~N 

the set of accepting states. The transition function

is now defined to map sextuples of states into states,

6 66: -

~~ 

(in the nondeterministic case, 6:  
~ N 

-
~ 2 ). As

with the CA we have the usual boundary state restrictions in

order to confine the computation to the size 2’ + 2r l  +

• . . + 20 = 2r+l 1 triangular retina:

1) #E~~ is the boundary state

2) 6(q. ,q. ,q. 
~~~~~~~ 

) = # if f q. = # for arbitrary
11 12 13 6 11

states q. 
~ 
0N’2 ~ 

j ~ 6.

Those cells which are in the domain of the transition

function 6 are called the neighbors of M. They consist of

M’s left and right neighbors (“brothers”) in its own row,

two “son ” cells of M in the row below it, and one “father”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



cell in the row above it. If M is the ith cell in its row,

• its sons are cells 2i-l and 2i in their row, and its father

is cell Fi/21 in its row.

The apex cell in the triangle is called the root, and

the bottom row of 2r cells, the base. The height of the

triangle is the length of the shortest path from the root

to a cel) in the base. Thus a triangle with a base of length

has height r and 2r+1_ 1 retina cells.

• The f igure below illustrates the graph representation

of a TA with a base of length 8 , where neighbor cells have

been joined by arcs.

*

2 3

5 6 7

8/ \~ 10/ ~~~ 12/ \13 14/ \~ 5
—1* •

* * * # * * * * * *

• The retina cells are labelled (b read th—fi r s t )  1 through 15,

and the boundary cells are labelled #. The root has label 1

and the base has labels 8 through 15. Cell 4’s father is

cell 2, its left brother is cell *, its right brother is
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5 , its left  son is cell 8 , and its right son is cell 9.

A conf i guration is an assignment of states to each cell

in the retina. A step is defined as for the CA. An input

• configuration has the for~t:

*
# b #

# b b #
# b b b b #

# b b . . . b b #
# q1q2 • . .q~r ..1q 2~ ~

• % # #  ...# # #

That is , the input string a = q1q 2 . . .q 2~ defines the start

sta tes of cells in the base at the tr iangle , the rest of

• the retina cells are ini t ia l ized to the quiescent state

b ‘

~ 
0T ’ and the triangle is embedded in a border of cells

in the boundary state . A string a E is accepted by a TA

of height  r if a~ = 2r and the root enters an accept state

g A a f t e r  some f in i t e  number of steps . The language

accept ed by a TA is defi ned as the set of all strings

accepted by it.

• To i l lustrate the operation of TA’s, we show that the

language

Lpar ity 
= {a l a  x1x2.. .x2k, x . t {O , l}, 1 ~ i ~~

and the number of l’ s in a is even}

is accepted by a TA.

Proof: Define a TA with base of length as follows:

M = (QN ,QT,6,A)I where

L_i . — — —---•-- • - -- -t —, - • --—-~~~~~ • • — — . • • - • -  —------- —••--• - . —.• •- —- —•- — • • - — •-
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= {o ,l,b}

QN QT U {#}

A = { O }

and 6 (current cell, father , left brother , right

brother , left son, right son) is defined by:

for all ô(b ,q.,q.,q ,O ,0) = 0) new parity of cell is even
i. 

~ 
k 

~ if parity of left son is
= 0 J equal to par ity of right son

• . in cS (b,g.,q.,q~ ,O ,l) = 1
1 3 

5 
otherwise, new parity is odd

= 1

• Otherwise , ~~q ,q. ,q.  ,q.  ‘~~i 
,q~ ) = for all

1j~ 12 1
3 

14 5 6 1

~ ~N’ ~ ~ 
j ~. 6

j

The initial configuration (boundary cells not shown )

is:

b
A
b-b

b b ... b
,/\ where x~~ (O,l), ~ ~ ~ 2k

x1— x — x — x  ... x —— x2 3 4 2k...1 2k
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• Since a cell changes state only when its two son cells

are in the 0 or 1 state, it follows that after k time steps

the root changes from state b. By induction , if the Etate

- of the root is 0, then the number of l’s in the base is

even , otherwise the number is odd. Thus the parity predi-

cate is recognizable in time proportional to the logarithm

of the length of the input. In contrast, recognition by

either an LBA or CA requires time proportional to the length

of the input.

I
F;

~i I



• - -  ~- _ _ _

3.2 Pyramid Cellular Acceptors

A pyramid cellular acceptor (PA) is a pyramidal stack

of two-dimensional CA’s, where the bottom array has size

2r by 2r, the next lowest 2r—l by 2r-l and so forth , the

(r+l)st layer consisting of a single cell , called the root.

Each cell is defined as an identical FSM M = (QN , Q T ? 6 ,A ) .

and A are defined as before. Each cell now has nine

• neighbors -- four son cells in a two-by-two block in the

• level below, four brother cells in the current level, and

one father cell in the level above. The transition func-

tion 6 maps lO—tuples of states into states —- or sets of
• states, in the nondeterministic case. Otherwise, the con-

ventions set up for the TA still hold. The input pattern

is stored as the initial states of the bottom array , hence-

forth called the base array. The root is again the accept-

ing cell.

Since the pyramid has only r+l layers , a PA has a

machine lower bound time proportional to the logarithm of

the base array ’s diameter . Furthermore, the additional

hardware cost required to achieve this potential time

• saving is moderate -- less than a third more cells than
1 1 2 1in the CA (l+if-(

~
-) +... l—(l/4 ) = 4/3).

-~~ -~~~~~~~~~—~~ -~~~~~~~ 
~~ LN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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• • 3.3 Bottom-up Machines

Alternative neighborhood definitions can be made which

• restrict information transmission through a PA. In parti-

cular, we now define a simplification in which the only

neighbors of a cell are its sons, so that state information

can move only one way up the pyramid . A bottom-up pyramid

• acceptor (BPA) is a PA whose state transition function is

modified to be 6: Q~ 
-

~ ~N - In this case the next state of

a cell depends only on the current states of that cell and

its four sons. As in the PA, the input pattern defines

• the start states of the base array , the other retina cells

being initialized to the quiescent state b. The input is

accepted if the root ever enters an accept state.

Similarly we define a bottom-up triangle acceptor

(BTA) to be a TA with its neighborhood reduced to include

only the given cell and its left and right sons. The

transition function is defined as 6: -

~~ 

Under these

restrictions a BTA can be represented by a complete

directed binary tree in which the nodes are cells and the

directed edges indicate that the source cell is a neighbor

• of the destination cell. The figure below shows a BTA of

height 2:

1



In the next section we establi sh some results about the

acceptance power of PA ’S and TA’s, and in particular of

BPA’ s and BTA ’s.

I.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •—-~~~~~~~~~~ • —---~~~~~~ •~~-~~~~~~~~ ~~~~~~- -- -—
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• • 4. Capabilities of SPA ’s

In this section we describe some basic BPA recognition

algorithms. These include detecting the presence or

absence of a specified local pattern in the input, and

counting the occurrences of such local patterns. These al—

gorithin s require only O(log diameter) time .

In describing the algorithms, we will not use the

terminology of states and transition functions ; rather , we

will simply say that a cell transmits or outputs certain

• information to its father, or receives certain information

from its sons. We assume that the size of the pyramid

base is 2~ by 2n, so that the height is n. The layers

will be numbered 0,1,...,n, starting from the base.

- • •-• - ••. • - •• -•—~~~~~ -—- ~~ ~~~~~~~~~~~~~~~~~~~~ • • -- •~~~~~~~~~ -• - — •~~ ~~~ •
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4.1 Local Property Detection

We first consider the trivial problem of detecting the

presence (or absence) of a specific value z in the input

image. This can be done as follows: Each base cell corn-

- pares its input image value to z, and if they match , the

cell transmits a “match bit” (1) to its father. In

~~ addition , every base cell transmits a “flag bit” (1) to

• its father, to indicate that the matching has been performed.

If a father receives a match bit from any of its sons, it

transmits a match bit to its own father ; and in any case ,

• it transmits the flag bit that it has received. When the

apex cell receives the flag bit, then if it also receives

a match bit , it outputs a success signal , and if not, a

• failure signal. Note that if we did not use the flag bit,

the apex cell could not detect the absence of z’s, since

it would not know whether or not the match information has

reached it.

The time required for this algorithm is just (log

diameter) steps. More precisely,  if tm is the time needed

• for the base cells to match their input values with z’s,

- and tr is the time required for a cell to receive 
match

and flag bits from its sons (and to perform a logical

“or” operation on the match bits), then the time required

H is tm + rttr~
Detecting arbitrary local patterns , rather than

specific values, is best done by allowing sidewise trans-

mission of information in the base. Each base cell can
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• then decide whether or not it is the “head cell” (e.g., the

leftmost of the uppermost cells) of the given pattern, by

• accepting appropriate information from its neighboring

cells. Since the patterns are of bounded size , the amount

of information needed is bounded , and presents no special

transmission problems. When a cell discovers that it is

the head cell of a pattern , it can take on a special value,

• and the presence or absence of those values can then be

detected as just described.

For a BPA , detecting arbitrary local patterns is

harder. The problem is that if the pattern is in a bad

• position , say exactly in the middle of the base , the cells

at a bounded height above the base cannot see all of it,

hence cannot detect it. [This problem would not arise if

the cells on each layer looked at overlapping neighbor-

hoods on the layer below; but this would require a linearly ,

rather than exponentially , tapering pyramid , the height of

which would be proportional to the base diameter rather

than to its logarithm , so that log diameter time operation

would no longer be possible.]

In one dimension , arbitrary local patterns can be de-

tected by a ETA using the following brute-force approach.

Suppose that the desired pattern has length k. Each cell

• at height log k recieves a copy of the entire portion B

of the base below it, and dec ides which (if any) of the

following conditions holds for that portion .

• a) The entire pattern is present in B. We denote

___ 
• •- ~~~~~~~~~~~~~ —•—--- - •-•• 5- -‘--• -
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this condition by S (for “successful detection”).

b) An initial segment of the pattern of length i is

present at the right end of B, 1 ~ i < k. This

condition will be denoted by S1.

c) A terminal segment of the pattern of length j is

present at the left end of B, 1 ~ j < k. We de-

note this condition by S .

If none of these conditions holds, we dennt~ that fact

by F. Note that more than one of them can hold sirnul-

• taneousiy. The set of those that do hold can be repre-

sented by a bit pattern of length 2k. This bit pattern

is transmitted to the cells at the next layer above , and

these cells now operate as follows:

1) If S is received from either son, transmit S.

2) If Si is received from the left son, and Sj~~
from the right son, 1 ~ i < k, transmit S.

3) Otherwise, transmit the left son ’s S’ information

and the right son ’s S1 information (if none , trans-

mit F).

Thus these cells too transmit only a bounded amo~r’t of

information . The process is now repeated . It is clear

that the apex cell will transmit S if f. the desired pattern

is present , and that the entire process takes log diameter

time steps.

It is not clear how to generalize this algorithm to

two dimensions, since pieces of the pattern can now occur

in a large number of different positions around the

•-~~~~~~~~~~~~~~~~~



borders of the base segment B, and we must preserve the

information about where they occur in order to match them

properly with pieces in neighboring base segments. In any

case, the algorithm is inelegant even in one dimension ,

since it requires a large amount of pattern matching to be

done by the layer of cells at height log k , which also

• need a large amount of memory to copy their base segments

B. The use of sidewise transmission of information to de—

tect local patterns in the base , as suggested above , is

• undoubtedly preferable.

~ L
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4.2 Local Property Counting

We next show that a BTA can count, in 2 log diameter

time steps, the number of occurrences of some particular

symbol z in its input. Specifically, the apex cell will

output, at time steps n to 2n , the n+l bits in the binary

representation of this number (which lies between 0 and 2
fl ) ,

least significant bit first. The generalization to EPA ’s

is straightforward.

The counting algorithm is defined inductively; we

• shall prove that at time steps k to 2k, each cell in the

kth layer above the base (k=0,l,...,n) outputs the number

• of z’s in the portion of the base below it, least signifi-

cant bit first. To initialize this, each base cell (k=0)

outputs, at the end of time step 0, a 1 if its input value

is z, and a 0 otherwise. Now consider a cell C in the

(k~ l)st layer. By induction hypothesis , it receives from

its sons at the ends of time steps k,... ,2k the numbers of

z’s in their base segments. C can now function as a serial

adder : At time step k+l it sums the two least significant

bits of its sons ’ numbers and stores the sum and carry

bits. At the end of step k+l it outputs the sum bit. At

step k+2 it receives the next least significant bits from

its sons, adds them to the carry bit , stores the resultant

carry bit, and outputs the sum bit. This process is re-

peated at steps k+3,...,2k. At the end of step 2k+l , C

outputs the sum bit resulting from the last addition

‘1 step, and at step 2k+2 it outputs the carry bit resulting

from that step. Clearly C’s outputs at steps



k+l ,...,2k+2 = 2(k+l) are just the bits of the sum of its

sons ’ outputs, i.e., the number of z’s in C’s base segment.

Note that the base cells must output their bits only

• at time step 0 if this algorithm is to work. To insure

this, the input data can be erased; or a flag bit can be 
&

set that inhibits further output. Once we know that the

base cells produce no output after time step 0, it is easy

to see that the cells in layer k produce no output after

the end of time step 2k. The total time required by the

algorithm is 2nta~ where ta is the time needed to perform •

one step of the serial addition process.

~~~~~~~~~~~~~~~ •



5. Comparisons with Other Models

In this section we compare BPA ’ s ( or BTA ’ s) with three

• other computational models -- finite-state acceptors (FSA ’s),

• frontier—to-root tree acceptors (FTA’s), and diameter-

limited perceptrons (DLP’s). We show that

a) BTA ’s are stronger than FSA ’s, and can simulate

them in log real time

b) EPA ’S are stronger than FTA ’s

c) BTA ’s are stronger than DLP ’s, if we assume cer-

tam bounds on the precision of the coefficients

and threshold used by the DLP ’s.

—--_-•--- •~~~~~~~ • • •• .— •-_ •—- •- -•~~~~~~ _ • •_-•-_--- - ~~~—- • • • - — - •. --_--•••
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• 5.1 BTA ’s and FSA ’s

We first show that BTA’s can simulate FSA ’s. It

suff ices to show this for an FSA , call it M , that is one—

way and deterministic, since such M ’ s can simulate two—way

or nondeterministic FSA ’s. Strings whose lengths are not

powers of 2 can be padded with # ‘ s at their right ends .

Let the state set of M be S = 

~~l ’• •  . , s~~}. Each base

cell , say having input value v , constructs the vector
• ~~
. 

~

• ~~~~~~~~~~~~~~ 
where t~ is the state that M goes into if it

• reads symbol v while in state s~~, 1 ~ i ~ m. This vector

defines a function from S into S. (I t  is understood that

• if M reads a * it can continue to move but does not change

s ta te . )

Each non-base cell C now computes the composition of

the functions defined by its sons ’ vectors . In other

words , if these vectors are (u 1,. .  ., um ) and (v 1, . . .  ~vm )

for the lef t  and right sons of C , respectively, C constructs

the vector (w 1,. ~~~wm ) in which w~ = V
u , 1 ~ i ~ m. It

is easily seen that w~ is j ust the state that  N would end

in if it started in state s~ and scanned the portion of

the base lying below C. Indeed , by the previous paragraph

this is true if C is a base cell; and if it is true for C’ s

son s , it is also true for C , since C’ s vector is just  the

composition of its sons ’ vectors.

Thus the apex cell’ s vector (z 1, . . .  ~zm ) specifies the

state that M ends in if it scans the entire base , starting

• in state s1, 1 ~ i ~ m. In particular, if M ’ s initial

• —~~~~ • •
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state gives r ise in this way to a f i nal or accept ing state ,

the apex cell can accept the base , and otherwise not.

If t ( k )  is the time required to look up a value in a

table of length k , then the time required for this simula-

tion is essentially t ( r )  + nt (m) , where r is the number of

input symbols (gray levels) . Here t includes the time re-

quit -ed to transmit the sons ’ vectors to the fa ther .  This

is O( log  diameter) time , and is faster than the FSA itself ,

since that requires time 2 1) to scan the base.

It is not clear how to generalize this construction

• to two dimensions . The problem is that M can enter or leave

• a given portion B of the base at many places ( i . e . ,  any-

where along B ’ s perimeter) , so that we can no longer specify

M ’ s behavior relative to B by a vector of bounded length .

Thus it is an open question whether a BPA can simulate a

two -dimensional FSA . (Simulation should be possible for a

“ one -way ” two—dimensional FSA that can only do a raster

sc~ n of its input ;  but such FSA ’ s are very weak.)

BTA ’ s can also accept many languages that ca nn ot be

accep ted by FSA ’ s. A simple example is aNbN (where

N =2 ° 1 ) .  The algorithm for accepting this is as follows :

If a cell’ s son s are bo th a ’ s , it outputs a; if both b ’ s ,

it ou tputs b ; if a and b ( in  that o rde r) ,  it outputs  T;

otherwise , it outputs F. If the apex cell outputs T , the

BTA accepts; otherwise , it rej ec ts .  A similar construction

shows that  a BTA can accept lanqauqes that are not even

• 
con tex t - f ree, e . g . ,  aMbMcMd (whe re M=2 rt~~~) .  Th us ETA ’ s are

• st r i c t ly  stronger than FSA ’s. 
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5.2 BPA’s and FTA ’s

A frontier-to-root tree acceptor (FTA) can be defined

[12] as having a finite—state automaton at each node of the

given rooted tree. Initially , the processors at the twig

nodes read their inputs ( i . e . ,  the symbols at those nodes ,

if any) and generate output states. These states are sensed

by the fathers of the twig nodes , who use them (together

with their own input symbols) to generate their output

states; and so on. A node does not compute its output unti l

it has sensed the outputs of all its sons. The root node ’ s

output indicates whether or not the input tree has been

accepted .

Suppose , in particular, that the tree is a complete

quad-tree of depth n; this corresponds exactly to the tree

structure of a BPA with base size 2n~ 2n If we assume that

the input symbols are all blanks except at the base , then

the operation of the FTA can be simulated by a single “ wave ”

of information passing up the BPA from base to apex .

This s imulation requires exactly log diameter time (where

computing the BTA ’s state transitions takes unit time).

On the other hand, there are some recognition tasks

that a BPA can perform that it cannot do in log diameter

time; we shall show immediately below that recognition of

palindromes is such a task. Evidently, such tasks cannot

be done by an FTA , since whatever the FTA does at all must

be done in log diameter time. Thus BPA ’s are stronger

than FTA ’s.
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For simplicity , we treat palindrome recognition in the

• one-dimensional case, i.e., by a ETA. We first show that

• it cannot be done in less thanO(diazneter) time. Indeed,

acceptance by the apex cell depends only on the sequence of

• states of each of its sons , and there are mt such sequences

of length t , where m is the number of states. Now each

half of the base has ~~~~~~~ possible configurat ions.  Thus

~~~ < 2 n—l , two of these configurations, say B1 and B2 ,

must give rise to the same state sequence. This means that

• if the apex accepts B1B~ in t time steps , where t < 2n 1

• it must also accept B2B~ , which is not a palindrome. Thus

no BTA can accept palindromes in less than 2Tt~~ = (diameter/2)

time.

We shall now show that there does exist a BTA tha t

accepts the palindromes in 0 (diameter) time . As a prelimin-

ary to this, we show how the cells in the kth layer of a

BTA can be made to count rnodulo 2k -— i.e., to change state
eiery ~~ time steps. We do this by outputting l’s from

the base cells , repeatedly . A non-base cell outputs l’s on

alternate times that it receives l’s from its sons. Readily ,

this implies that the cells in layer k output l’s at time

steps that differ by 2k~ We can regard such a cell as

initially being in state 0; changing to state 1 when it re—

• ceives l’s from its sons; changing back to state 0, and out-

• putting 1, the next time it receives l’s from its sons; and

so on .

Now suppose that whenever a cell is in state 0, it

copies its left son’s value (i.e., gray level), and when it
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is in state 1, it copies its right son’s value. Thus a

cell just above the base (in layer 1) copies its left and

right sons’ values alternately; a cell in layer 2 copies the

lef t and right sons of its lef t son, then the left and right

Sons of its right son, repeatedly; and so on. By induction ,

it follows that a son in layer k copies the values of the

cells below it in the base, in left to right sequence, at

times k, k+l,. .. ,k+2k_l; and this process then repeats
(modulo 2k) In particular, the apex cell copies the entire

• base, in sequence, starting at time n.

Using a mirror image of this process, we can also get

the apex cell to scan the base in right to left sequence.

It can thus compare the two scans, point by point, and

accept if their first halves match -- i.e., if no mismatch
has been found by the time the apex cell enters state 1.

The total time required for this is n+2’~~ (the scans start

at time n, when the values begin to reach the apex), assuming

that the processes of copying values and outputting l’s take

unit time. This result is nearly optimal, since we saw

above that 2”~~ is a lower bound.

•_ ± - •- - - • • - - - - --— _ -- .----—--
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• 5.3 (B)PA ’s and DLP ’s

A diameter—limited perceptron (DLP ) can be defined as

operating in the following way:

a) It detects the presence or absence of a given local

property in a neighborhood of each point of its

input , where the neighborhoods are of some bounded

diameter d.

b) It computes a sum of the form ~~~~~ over the point s

of its input , where p1=l or 0 depending on whether

or not the property is satisfied at the given point .

c) It compares the sum to a threshold T , and accepts

the input i f f .  the sum is at least T.

We have already indicated (see Section 4.1) that a CA

(or a BTA ) can detect the presence or absence of a given

local property m a  f ixed-size neighborhood of each of its

base cells. Let us therefore assume that this has already

been done , and that the cell has stored the value 1 if the

property holds , and 0 if it does not (or if the property

was not to be computed at that point) . We assume that the

• number of properties to be computed in this way for each

base cell is bounded, so that the cell can store a bit

pat tern of bounded size that indicates which of them are

applicable and valid.

Let us fu r ther  assume that the coeff ic ients  a1 in step

(b) have bounded precision, so that they too can be stored

in the base cells. Thus each base cell can compute its

portion of the sum 
~~~~~ 

since this sum includes only a

bounded number of terms, each of bounded size.

j



Finally, we assume that the threshold T in step (c) has

precision that grows at most linearly with the input size.

• This implies that T can be stored in the base of a EPA as a

unary number by storing l’s in a subset of the base cells.

Given all these assumptions, a PA or BTA can simulate

the DLP by summing the l’s to compute T, and also summing

the a1’s to compute ~~~~~ The algorithm for summing the

which are numbers of bounded size, is a straightforward

extension of the counting algorithm of Section 4.2; e.g.,

if the a1’s are in the range [o ,rl, the cells can sum them

by acting as base (r+l) adders. The digits of the sum will

thus be output by the apex node at times n,. . . ,2n (where an

addition takes unit time). The digits of T will also be

output at these times, and if we sum them too in base (r+l),

we can compare digits serially to determine whether or not

La~ p~ � T.

In summary , we have shown that PA’s can simulate a re-

stricted class of diameter-limited perceptrons -- namely ,
those for which the three underlined assumptions hold. The

simulation requires time tm+2nt a , where tm is the time re—

r quired for the base to compute the p1’ s , and ta is the time

for a non-base cell to do a base (r+ l)  addition . The DLP

computes Ea~ p~ and compares it with T “ instantaneously” ,

but this requires it to sum a very large number of inputs

simultaneously, which is physically unrealist ic.

PA’ s can also do many things that DLP ’ s cannot do. As

a simple example , it is known [7)  that a DLP cannot deter-



• mine the parity of the number of l’s (say) in its input. On

the other hand , a BTA can do it very simply as follows: The
- 

base cells output their values (0 or 1); each non-base cell

outputs 0 if its sons’ outputs are the same, and 1 if they

are different. Readily , a cell ’s output is just the parity

- of the number of l’s below it in the base (0 for even, 1 for

odd); thus the apex cell’s output is the parity for the

whole base, and this output is produced in time n. This

algorithm can be easily extended to a two-dimensional BPA .

• 1



6. Some Other BPA Algorithms

BTA ’s can also recognize a variety of other input

languages ; the following are a few examples:

a) Connectedness: In one dimension, the set of strings in

• {0,l}* in which the l’s are connected is just the regular

set 0*1*0*. Thus a BTA can recognize this set by simulating

an FSA , which checks that there is no 10 pattern in the input

to the left of a 01 pattern . More generally, a BTA can

count connected components of l’s by counting the number of

(say) 01 patterns and adding 1 to the sum if there are l’s

at the left end of the input. It is an open question

• whether a EPA can recognize connectedness of the set of l’s

in its two—dimensional input, or whether it can count con-

nected components of l’s.

b) Equality and majority. A BPA can easily check whether

the number of l’ s in its input is equal to, or greater than ,

the number of 0’s, by simultaneously counting both of them

and comparing the counts (see Sections 4.2 and 5.3). Less

trivially, a ETA can check whether its input contains
I.

exactly two connected runs of l’s both of which have the

same length. It verifies that there are exactly two runs

by simulating an FSA. At the same time , it counts the l’s

to the left of the leftmost 10 pattern , by a straightforward

extension of the counting algorithm to inhibit counting l’s

• that lie to the right of a 10. (Specifically: besides

transmitting numbers of l’s, each cell also outputs a

• special signal s that indicates whether the part of the base

• I
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below it contains the pattern 10. If a cell receives s

from its lef t son, it copies the left son ’s count of l’s

and ignores the right son’s count; otherwise, it adds the

two counts. Readily, this results in the cell’s counting

the number of l’s to the left of the leftmost 10 under it

in the base.) Concurrently , the ETA counts the l’s to the

right of the rightmost 01 pattern , and it compares these

two counts, which allows it to determine whether the runs

have equal length (or, for that matter, whether a particular

• one of them has greater length than the other).

• 

• 
c) Closure properties: Union, intersection, and reversal.

Triva lly , any finite union (or intersection) of BPA

languages is a BPA language, since we can construct a BPA

that simulates the acceptors of these languages simul-

taneously, and accepts if f. one (or all) of them accept(s).

The reversal of a BTA langauge is a BPA language , since it

is accepted by a mirror-image of the given BTA . We shall

see in Section 7.2 that the complement of a BPA language

is also a BPA language. A concatenation of two ETA

languages is a BTA language, provided we concatenate only

strings of the same length, since the left and right sub-

• trees of the ETA can then accept the two halves of the

base, and the root (apex cell) can accept if its two sons

have accepted. It is less easy to see whether concaten—

ations involving strings of different lengths , or numbers

of strings that are not powers of 2, can be accepted .
• •

• This problem is closely related to that of whether ETA

• — -_ ••--- ,—— —•-~~~~~~~-~~~~~~-
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languages are closed under translation -— i.e., if L is a
ETA language , is there a ETA that accepts *~ a#~ (where * is

a special “blank” symbol) iff. a*zL? Shift invariance will

be discussed further in Section 7.3.

d) The Dyck language. We conclude this section by exhibit-

ing a BTA that accepts the set of well—formed parenthesis

strings in O (log2 diameter) time.

Note first that, given any parenthesis string , we can

reduce it to the form )
1

( 3 , where i� 0 and j � 0 , by re-

• peatedly cancelling adjacent pairs 0. Given two strings

whose reduced forms are )
i

( ) and )k(~ , the reduced form of

their concatenation is

• ) i+k-j (~ if j ~ k 
; ) i ( Z+J -k 

~f j �k

A string is well—formed if f .  its reduced form is the null

str ing ( i =j = 0 ) . Thus a BTA can recognize well-formed

parenthesis strings if each cell can compute the reduced

form of the parenthesis string in the part of the base below

it; the BTA accepts if f .  the apex cell’ s form is nul l .

Evidently a cell just  above the base can compute its

reduced form; this is just [i , j ]  where i=j =0 if the base

contains 0 ;  i 1,j =l if the base is ) ( ;  i 2 , j 0  if it is ) ) ;

and i=0 ,j =2  if it is ( ( .  Suppose , then , that each cell

transmits its i and j counts to its father , as in the stan-

dard counting algorithm, using two separate “channels ” to

count i ’s and j’s simultaneously. In order for the father

to compute its own count, given the [i ,j )  and [k ,9.1 counts
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of its sons , the father must f i rs t  determine whether j ~ k

or j �k. It can do this as it receives the counts for the

first  t ime; and it must then receive them a second time in

• order to do the necessary addition and subtraction ( i+k-j

or R + j — k ) .

The timing of this process is as follows: Each cell

receives the inputs from its sons and compares them to de-

• termine whether or not j ~ k. For a cell in layer h , these

inputs have h bits, since the numbers are between 0 and

inclusive. The next time it receives them , it computes its

own (h+l)—bit outputs. It then waits for the inputs to be-

gin again, and computes its outputs again; this process is

repeated. Each cell transmits a special flag bit whenever

it begins outputting, so that its father can tell when its

inputs begin.

Readily, a cell in layer h first begins to receive its

h-bit inputs at time h(h+1)/2. It may not begin to receive

them again immediately , because of the possible waiting

times mentioned above; but the delay , if any,  is at most h

time steps. Thus it can compute and transmit its (h+l)-bit

outputs at times separated by not more than 2h+l. In par-

ticular , the apex cell has computed its output by time at

most (n(n+l)/2) + 2n+l = 0(n2), and if this output is zero,

it accepts the input string.
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7. Limitations

7.1 CA’s Can Simulate PA’s

PA’s are faster than CA’s for some tasks, but they are

not inherently more powerful. In fact, a CA can simulate a

PA , though the simulation is rather inefficient . For simpli-

city , we demonstrate this in the one-dimensional case, i.e.,

we show how a one-dimensional CA can simulate a TA.

Since a TA of base length 2’~ contains 2
ni~~ _1 cells , we

use for our simulation a CA of length 2n+l ; or, equivalently ,

we use one of length 2”, and have each cell simulate a pair

• n+lof adjace nt cells in a length 2 array . Each CA cell

~ i1i simul ate one TA cell , where the correspondence is de-

f ined by a b read th—fi rs t  scan of the TA; for example , if

n=4 , the TA cells

1
2 3

4 5 6 7
8 9 10 11 12 13 14 15

t i r e  mapped into the CA cells

( 0 )  , l , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,9 , lO , ll ,12 ,13 ,14 , l5.

In this mapping, the cell in the ith position has its

bro the r( s)  in positions i±l , its father in position li/2 i  ,

and its sons in positions 2i and 2i+l .

To simulate a single cycle of the TA , each CA cell

must have access to the states of its corresponding TA

cell’ s brothers , father , and sons (if they exist) . It can

immediately access the brothers , since they are adjacent to

it in the CA. If the TA cell is at the end of a row , so

L~~~~~~~~~~~~ ..
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that it has only one brother (or none, in the case of the

apex cell), the CA can know this fact by specially marking

those cells whose positions are powers of 2, corresponding

to beginning of TA rows; the marks can then inhibit cells

21 and 21_l from treating each other as brothers. The mark-

ing can be done by a simple adaptation of the son-finding

algorithm to be described immediately below.

To send information about its state to its father cell ,

• 
i CA cell sends two signals leftward , one travelling at three

• times the speed of the other ( i . e. ,  one moving at every time

step, the other waiting two time steps between moves) . When

the fast  signal reaches the left  end of the CA , it bounces

back and moves rightward until it meets the slow signal , at

which point the signals cancel out . It can be readily veri-

fied that this meeting takes place first for the signals

from cell 1, then for those f rom cell 2 , e tc . ,  so that all

the cells can send their signals out simultaneously without

da nger of confusion. (Meetings of slow signals with fast

signals that are still moving leftward are ignored.) More-

over , the pair of signals from cell i meets just  at position

[ i/2J . Thus the signals can inform cell l i/2J about the

• state of cell i. For cell 1, the meeting occurs at cell

0 , which is not simulating a TA cell , since cell 1 has no

father .

Similarly, to send information to its son cells , a CA

cell sends a fast signal leftward and a slow signal right-

ward. The fast signal bounces off the left end and moves



rightward until it overtakes the slow signal and they cancel.

Again, this happens exactly in sequence for the signals from

cells 1, 2 , . . . ,  so that the signals can all be sent simul-

• taneously. Moreover, the signals from cell i meet just at

position 2i, so that the signals can inform cell 2i (and its

neighbor 2i+l) about the state of cell i. For cells

• 2n l ,~~~~,2n_1 the slow signal reaches the right end before

being overtaken; in this case the signals can be allowed to

die, since these TA cells have no sons.

Note that this process takes time 2n~~ + 2n 
= 3~ 2n (the

time required for the messages from cell 15 and cell 7 to

reach each other). In other words, simulating a single TA

time step takes the CA O(diameter) time.
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7.2 BPAs’ Behavior is Periodic After Polynomial Time

We saw in Section 5.2 that a ETA requires time 2n l  to

recognize palindromes, and showed that it can recognize them

in essentially that time. For this purpose, we used a con-

struction in which the cells in layer k behave periodically

with period 2k, by changing from one state to another on

alternate times that their sons change state. By an

immediate generalization of this construction , if a cell

changes state every rth time that its sons change state,

• • then the period of the k-th layer cells is rk, so that the

apex cell has period r~ = ~~~~~~ = (2n)logr which is poly-

nomial in the base length.

We shall now show that the behavior of any BPA must be

periodic with period polynomial in the base length. To

see this, note that the base cells are finite—state machines

with constant input; hence their outputs are periodic , say

with periods p1,...,p , where each p1~~m (the number of

states). Furthermore , given any cell whose inputs are

• periodic , say with periods q,r,s,t, its output must also be

periodic with period ~ m.LCM(q,r,s,t). Thus any cell in

the kth layer has periodic output with period ~

m.LCM [m.LCM[m.LCM[. ..]]] (k repetitions)

mk.LCM (a set of pt’s]

~~

since the p1’s all ~ m, so their LCM ~ m!. In particular ,

the apex cell has period ~ m’~~m ! = 2nlogm.~~i = ~ l (2n)lo~~

• which is polynomial in the base diameter.

_ 
_ __ _ _  
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It follows from these remarks that the complement of a

BPA language is always a BPA language. Indeed, given a BPA ,

• M, that accepts the language L, suppose that the cells of M

have m states. We can then construct another BPA ,M’ , that

simulates M , and that also “counts” (as in the first para—

graph above) with apex cell period greater than fl~~ 2n ) l0~ m
•

When the apex cell completes one period , if the M simulation

• has not yet accepted its input, M’ can accept.

I
-

_ 
—- —S
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• 7.3 Shif t  Invariance

By definition , PA’s have bases whose dimensions are

• powers of 2, so that their inputs must always be of certain

sizes. However, we can use them to recognize inputs of

• arbitrary size by padding the input out (to the next higher

power of 2) with a special symbol , say #,  that does not

otherwise occur. It is clear that this padding does not

affect a (B)PA ’s capability to count local events, to simu-

-
• 

late an FSA (in one dimension), to perform linear threshold

• operations, or to recognize properties such as parity ,

• equality , or majority on the non-# part of its input.

In general , if there exists a PA ,M, that accepts an

input language L in some standard position (relative to the

borders of the base), then we can construct a PA that accepts

L in any position, by simply shifting the input to the stan-

dard position and then simulating M. This assumes that the

standard position is computable by the PA.

The situation is more complicated as regards BPA ’s,since

they cannot shift their input. For languages that are in-

herently shift—invariant , such as parity , equality , majority ,

the Dyck language, etc., there is no problem ; but it is

harder to see how, e.g., a ETA could accept padded palindromes.

~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



7.4 The Nature of BPA Algorithms

The EPA is defined so that information can be trans-

mitted only up the pyramid. If the cells in the base do not

have any positional information in the initial configuration ,

then clearly they can never know their positions in the base.

• By induction , no cell higher in the BPA can ever have

positional information . Thus no cell can know the position

of its subpyramid in the BPA and in particular , no cell can

know that it is the root of the BPA. Consequently, if a

language is accepted by a BPA then every subpyramid must

also accept the language . This enforces strict adherence to

the concept of local processing, since the computation on a

given cell’ s base must be completed entirely within that

cell’s subpyr~rnid . This implies that all BPA algorithms

must use a balanced divide-and-conquer method which composes

solutions to four problems with base size 2n 1  by 2n-l into

• a single solution to the size 2’~ by 2~ problem.

I
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8. Concluding Remarks

A class of pyramid cellular acceptors has been defined

which improves the potential lower bound time complexity for

recognizing two-dimensional patterns to the logarithm of the

input diameter. Conventional cellular arrays require time

proportional to the diameter for nontrivial recognition

tasks. The tradeoff of time for increased hardware is

moderate -- a third more processors in the pyramid than in a

one-layer cellular array.

• It has been shown that many nontrivial recognition

problems can indeed be solved in better than diameter time.

Those problems have an inherent structure which multiple

levels of parallelism can exploit. This can help to de-

lineate a taxonomy of picture languages based on inherent

complexity.

Most of the results presented here are described only

in the one—dimensional case. A fuller understanding of the

applicability of cellular pyramids to the design and

analysis of basic image analysis and recognition algorithms

will require further  work with two-dimensional picture

languages.

1 •

• I
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